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A semiclassical approximation derived directly from the Feynman path integral is employed in the study of
electric-charge-magnetic-monopole scattering. We show that this approximation, unlike perturbation theory,
is consistent with rotational invariance. The semiclassical cross section is explicitly evaluated. It differs from
the classical differential cross section for sufficiently large scattering angles due to the interference between
the several classical trajectories contriouting to the scattering at such angles. It is found that when the
scattering angle is not too near the backward direction the semiclassical cross section approaches the classical
limit rather slowly as the Dirac quantization number becomes large, or equally as #i-—-»0 with the product of

electric and magnetic charges held fixed.

I. INTRODUCTION

In this paper we demonstrate how to apply a
semiclassical approximation derived from the
Feynman path integral® to the problem of electric-
charge—magnetic-monopole scattering. A semi-
classical treatment of this system is already con-
tained in the noteworthy study ot semiclassical
methods of Ford and Wheeler.? Their approach is
based on a partial-wave expansion of the scattering
amplitude with JWKB phase shifts. Our method by
contrast does not rely on separating the Schro-
dinger equation into partial waves and may there-
fore enjoy a wider range of application. Further,
because it is based on the Feynman path integral,
this method seems better adapted to field-theoretic
generalization than the Ford-Wheeler approach
based on partial waves, in particular since the
partial-wave series is divergent for this system.

In studying the problem of charge-monopole scat-
tering it appears that semiclassical methods offer
the only known consistent approximation schemes.
An exact treatment reveals a partial-wave expan-
sion which is formally divergent (although sum-
mable).® On the other hand, perturbation theory
is beset with serious difficulties. The Lagrangian
has an explicit dependence on an external direction
(which we denote as EE and, as a consequence,
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the scaltering amplitude computed tc any {inite
order in perturbation thecry violates rotational
invariance. Further, the parameter characterizing
the strength of the interaction is not small due to
the Dirac quantization condition®® eg/4m =nk, where
7 is an integer or half-integer. Here ¢ and g are
the electric and magnetic charges.

The semiclassical approximation does not con-
tain these difficulties. The method of Ford and
Wheeler ensures rotational invariance from the
outset, while we are able to show directly that the
approximation we adopt is consistent with rota-
tional invariance as well. Further, we show that
our final approximation to the scattering amplitude
is independent of the initial choice of 7 when the
Dirac quantization condition is imposed.

Because more than one classical trajectory con-
tributes to the scattering process for a range of
scaltering angles, the semiclassical approxima-
tion yields a nonclassical cross section for charge-
monopole scattering. These trajectories interfere
in the semiclassical approach. The interference
terms are of the form aexp[+ib(eg/7)], where a
and b are independent of 7. Thus if eg is held fixed
as 7 =0, the interference terms vanish in the
distribution sense and the usual classical cross
section is recovered. Such a limit corresponds to
letting |n |~ in the relation eg/4m=uff. We shall
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see that the approach to this limit is rather slow
when scattering is not too near the backward di-
rection. Actually, however, for monopole fields
which emerge from gauge theories,® making n
large seems inappropriate since » is a topological
quantum number characterizing the solutions. A
more natural limit in this context would be to hold
n fixed as 7 - 0. Then the exponentials become
independent of 7z and the quantum corrections
become appreciable relative to the classical cross
section near the limit. Thus, it seems that pure-
ly classical considerations applied to Yang-Mills
monopoles may not always be accurate.

Another important feature of charge-monopole
scattering is the presence of infinitely many
“rainbow” angles, angles at which the number of
contributing classical trajectories changes. The
classical differential cross section diverges at
these angles. Also present is a limit point at
6 =7 of these rainbow angles (the backward
“glory”). Because of these phenomena, one
might expect the exact scattering amplitude to
possess interesting analytic structure in cosé.
The analyticity of the exact amplitude is investi-
gated in the following paper.’

Our semiclassical approximation is arrived at
by performing stationary-phase approximations
on the path integral. Ford and Wheeler’s answer
is found by taking a large-angular-momentum and
large-n limit of the partial-wave series.?
Pechukas' has shown that both methods yield the
same semiclassical cross section when applied
to central potentials. Here we find the same re-
sult in application to the charge-monopole sys-
tem (away from rainbows and the backward glory).®
Such a result is remarkable considering the
drastic differences between the two approaches.

In Sec. II we summarize the results from the
classical theory of charge-monopole scattering
and write down the form of its quantum correc-
tions in the semiclassical approximation. The
rotational properties of the semiclassical ap-
proximation are discussed in detail in Sec. III.
Section IV describes the explicit computation of
the semiclassical cross section. Concluding re-
marks are made in Sec. V. Appendix A gives a
brief derivation of the semiclassical scattering
amplitude. Appendix B contains a detailed deriva-
tion of the JWKB phases for charge-monopole
scattering. The corresponding analysis for cen-
tral potentials is also indicated.

II. CLASSICAL AND SEMICLASSICAL CHARGE-MONOPOLE
SYSTEM

We review the classical theory of a charged par-
ticle in a magnetic monopole field in part A and
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consider the quantum corrections to classical
scattering in part B.

A. Classical scattering

The Lagrangian describing the motion of a par-
ticle of charge e and mass m in the field of a
magnetic monopole is given by

L(3,3)=3mq%+eA,(,q)q; , (2.1)
where®
s & (A% Q)
A(,qQ) == ——=— . 2.2
D=4 [P -m-arT @2)
Here /i is a unit vector characterizing the vector

potential and g = Ia] 10 The curl of (2.2) yields the
Coulomb-type magnetic field:

IxA=-2 3 2.3)

The equation of motion which follows from the
Lagrangian is

. -obx-o).
gimal9Xde 2.4)
q
where
-_.
== (2.5)

From (2.4) one can deduce the following constants
of motion:

(a) The angular momentum 3=mé, where
C=qxd-ayq. (2.6)

The constancy of 5 follows from taking the cross
product of the equation of motion a= a(§x§)/q
with q and noting that 4+ =0.

(b) The magnitude of the orbital angular momen-
tum m |qxq|. This follows from C? =|qxq|*+a?.
(c) The magnitude of the velocity v=¢. This is
true since the energy is simply 3mg?.

It is well known that the solutions of (2.4) are tra-
jectories which are conﬁngd to the surface of a
cone with cone axis —€(a)C and opening angle 23,
where cosy=|a|/C. If we choose the cone axis
to be the third direction, the solutions are given
by“

a= q(siny cosg, siny sing, cosy), (2.7a)
F=v*t%+s?% | (2.7b)
sv
tang == (2.7c)
()
0=- siny tan s /) (2.7d)

where s is the impact parameter.
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FIG. 1. Cosine of the scattering angle 6 versus
|y|=(r/2)[1+(a/vs)?!/2. The figure shows the presence
of multiple classical trajectories which contribute to
the same 6 when ¢ is sufficiently large.

For a given s, the scattering angle 6 is given
by

0 L
cos 5 -ﬁsmy s (2.8)
where
_’_7€(°‘)_ .7_1[ <£>2]1/2
‘Y—zm— -€(a)2 1+ S0 . (2.9)

We have plotted cosé as a function of Iyl in Fig. 1.

The figure shows that more than one trajectory
contributes to the classical cross section at cer-
tain scattering angles, and that the number N(9)
of such contributing trajectories changes discon-
tinuously with 8. The rainbow angles are located
at positions where tany =y. The first three are
indicated in Fig. 1. Note that these angles ac-
cumulate at 6 =7.

The classical differential cross section o, for a
scattering angle 6 is given by

N(@)
06=5 lootr)| »
v

(2.10)
o.(y,) = [s

ds ]
9cosf “,u’

where the y,’s are the roots of (2.8) for a given
cosf. o,(y) can be computed from (2.8) and (2.9):

J

f(3,p) = lim

tf—b m,ti—b_m ¢! >

The functional integral representation for the
propagator is®

@0t~ 1)@ - [ Daems(} [ 7 (@)

(2.16)
The semiclassical propagator is obtained from

[ 2a)\2 v®
GC(Y)—<;Tz—v) [(@y/7m)? = 1]%siny cosy (tany =) °

(2.11)

Note that it is singular at the rainbow angles as
well as at 6 =m.
It is useful to know the asymptotic form of q

for large times. If we write
At =x@)+v()t , (2.12a)

where V(¢) is the velocity, it follows from (2.7)
that

X(t) - €(a)s(siny,+cosy,0) ast—zow , (2.12b)
V(t) - v(£ sinp cosy, —sinysiny, + cosp) as { —xw .
(2.12¢)

Note that
X(t) v(t)=0 ast—zw . (2.12d)

In what follows, we often denote the variables at
the initial and final times under consideration by
single and double primes.

B. Quantum corrections

In passing to the quantum case, we wish to de-
scribe the system in terms of scattering states.
If the momentum of the incident particle is p’, the
scattering wave function is

Q"= lim
ty

@lut,-1)[p"
—>+m.t'-—>-°=
i pIZ
xexp(% 2}7(1',—[1-)> ,
(2.13)

where U(t; - t;) is the evolution operator for the
system. The amplitude for scattering to a final
momentum state |p’’) is

f(BII,BI) = lim q'"exp <_ %5” ,an) <(‘1n I dﬁ) ,
?r> o
(2.14)

where E”=p'?1", and we consider for simplicity
nonforward scattering. Substituting (2.13) and in-
serting a complete set of states ]a’), we can write

lim ’ d3 l("ulu(t t)"’/) i Dol ot p= (2.15)
q f 7'\q s bl exp Z(pTeq =P eq o (= 8) ) | L (2

r

(2.16) by a well-known stationary-phase approxi-
mation on the path integral.’’*? One finds,

@it -1)|a" = Z 8,(2min) /2| s¢)

1/2

i v -D, -
Xexp<% S¥(q ',q',if—fi)) .
(2.17)
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Here |S{. | is the absolute value of det(925"/
8q/'ag’)"ad S =5¥X(q"",q’,t,~ t,) is the Hamil-
ton’s principal function given by

¢ -
S‘"’(a",a’,t;-t¢)=f fdl‘L(q,q) . (2.18)
ti

The integration is along the vth classical path

phase factors.

The semiclassical scattering amplitude can be
obtained from (2.15) and (2.17) (cf. Ref. 1 or
Appendix A). We find

A7, 00= 32 €] [oer )12 exo( 5 B

connecting the initial position Q' with the final (2.19)
position q’’ in a time #,—¢;. The 5,’s are JWKB where
—
B(u)('ﬁu"ﬁl)= lim ‘ lim [S("’(?l",a’,t;—t;)’fE(tf-t¢)+5'°?l'—5"'?1"] . (2'20)
\ tf —>°°1ti->-°° qt—> o

Here E=p"”/2m, and Q’ is defined in terms of p’
through

s

3q}
The JWKB phase factor €, will be computed in
Appendix B.

The function B simplifies considerably for
charge-monopole scattering if we use (2.1),
(2.12) and the constancy of v along the trajectory.
We find

=_/).’ . (2'21)

1]

B‘”’=e[ A-dq, (2.22)
CV
where the integration is over the entire tra-
jectory C,. Unlike the phase of the Coulomb scat-
tering amplitude, we shall see in Sec. IV that B®’
is finite 3
We note from (2.10) and (2.19) that the quantum
differential cross section o, differs from o, by
the interference terms
W) _ g
¥ ere, [[00tr,)octr) 2 fexp (-i =B )
vie
(2.23)
We may point out that our approximation breaks
down near the rainbow angles and 6 =w. This is
due to the fact that near these angles the sta-
tionary points in the integral in (2.15) are not
well separated. The approximation can be cor-
rected by a known procedure near these angles
(see Refs. 1 and 2). We have not carried out this
procedure, as it is quite involved in our formula-
tion.

IIIl. ROTATIONAL PROPERTIES OF THE EXACT
AND SEMICLASSICAL AMPLITUDES

This section is divided into three parts. In part
A, we give a preliminary discussion of the ro-
tational properties of some important classical
variables, while in part B, the rotational proper-

ties of the exact and semiclassical amplitudes are
discussed and shown to be mutually consistent.
Finally in part C, we show that the semiclassical
differential cross section is independent of 7.

A. Classical considerations

We begin by studying the transformation of the
vector potential under rotations of #. By (2.3),
VX A is unchanged when 7 is rotated except when
q is proportional to # or R#Z. These singular
configurations need not concern us for the moment.
Thus,

AR, - AR, 9=VAR,,T) 3.1)

for any rotation R. A falls off as ¢! as g—~.
Thus, if § () is a classical trajectory, (3.1) shows
that

(0;Alqqer =0 as [t|=. (3.2)

Also note that since g”! A has the dimension of
inverse length, A depends only on the unit vector
q:

A=AR,#,0). (3.3)

[A may be geometrically determined from the
solid angle swept out by # under the rotation R,
as seen by the observer at §.!* Equation (3.3)
states that, in fact, it depends only on the di-
rection of the observer.] As -+« along a clas-
sicaltrajectory, @(¢) ~ £+ (x») from (2.12a). Fur-
ther, the canonical momentum

p=mi+eA®,q) (3.4)
approaches m ¥V (+«) in these limits. Thus,
A= AR,A, £p(+=)) as t-—iw. (3.5)

Next let us consider the transformation of P under
a rotation R of § and §. By (3.4) and (3.1),

py=pf=Ryp;+eR;9,AR,1,7). (3.6)

Here R is the transpose of R, and we have used
the identity A;(R7,Rq)=R;;A,®,§). Thus
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pF—~Ry;p; ast~1o (3.7

by (3.2)

Finally, we consider the properties of S® and
B™, 1f {(¢) is a classical trajectory with § (¢;)
=§’ andq(4,)=q”, then Rq(/) is the classical tra-
jectory with the boundary conditions rotated by
R. Thus

tf - 3
SY(RE",RY' 1, ~1;)= dt L(R§,RQ)
ti
=S(v)(an,ar,tf —t‘-)
+e[AR,1,8") - AR, 7,0)].
(3.8)
Similarly, it follows from (2.22) that

B(V)(Rﬁ",Rﬁ’) = B(V)('ﬁll,'ﬁl)
+e[AR,7,P") = AR, 7, -P")],
(3.9)

where we have used (3.5).
B. Exact and semiclassical transformation laws

Here we first find the transformation under
rotations of the exact quantum-mechanical prop-
agation function and scattering amplitude. Then
we will show that the corresponding semiclassical
approximations transform in an identical way.

Consider first the exact propagation function.
Using the rotational invariance of the measure,
Dg =D(Rq), and the identity

b . 2 b 2
f dt L(RE,R) = f datL(@,q)
t; t;
+e[AR,7,0") - AR,7,8")],
(3.10)
it readily follows from (2.16) that
BT U ) |RT) =exp( 1 e, )
(@ U, -£)|d7)
X exp(—hi eAR,7, c}')) .
(3.11)
The transformation property of the scattering
amplitude can be obtained from (3.11), (2.15), the
identity d%q’ ==d*(Rq’) and the change of variables
from @’ to X' =q' - @' /m)t;.** We find
-n T = a a -
1R, R = exp( 7 AR, 7,57)6", )

i

><exp< AR, R, _13')>‘ (3.12)

—
-1

The semiclassical propagator is given by (2.17).
By examining the transformation law for S®’
[Eq. (3.8)], we see that the semiclassical answer
will have the correct transformation law, if
]Sé}’,’a,[ is invariant under rotations. To prove the
latter, we differentiate (3.8) on §” and §’ and find

325(11)(6”"(’1/, tf _ [1) _ 3ZS(V)(R-(1”,R§', tf _ l,)

- 92SW(EH, b -t
=R,.k___s._£i7_’__f_') . Ry;.
5E R
7Sk Bn, %:gq’

(3.13)

The result then follows by taking the determinant
and using detR =1. Similarly, the proof for the
semiclassical scattering amplitude follows from
(2.19) and (3.9) and the rotational invariance of
0.(7,).

The rotational invariance of the semiclassical
differential cross section is evident from the
structure of the interference terms (2.23) and
(3.9). This suggests that the interference terms
are independent of ##. We give a geometrical proof
of this fact in the next part.

It may be noted that the preceding proof is easily
generalized to show the consistency of the semi-
classical approximation with rotational invariance
to all orders of #z. To show this for the propaga-
tor, we write (2.16) as

G g Ut,-t;) [?1') = ; exp(éS(v)(an’a', b - t,-)>
x[fDq exp(f—i_f::dtL(ﬁ,é)

__;L__S(V)(all"c’ll, tf - t,)) :]-
(2.16%)

The higher orders in % for the vth term in (2.16)
are generated by expanding the (arbitrary) tra-
jectory in the action in a power series about the
vth classical trajectory and keeping suitable
terms. But by (3.8) and (3.10), the expression
in the square brackets is invariant under the ro-
tation §’ ~R§’, §” ~R{". Therefore, so are the
contributions of each term of the power series

to the square bracket. The required result then
follows from (3.8) and (3.10). A similar proof
can also be constructed for scattering amplitudes.

C. Invariance of % under rotations of 1

The following discussion is similar to that of
Schwinger.® Let us begin by simplifying the ex-
pression for B® given by (2.22). The contour of
integration C, can be deformed to C, without chang-
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ing the value of B provided both contonrs have
the same end points and the followirg condition
is satisfied:

ffi§~('V7><K)=0. (3.14)
N

Here S is the surface enclosed hy C, and CJ.
Substituting (2.3), (3.14) becomes'®

Si%g if a rav along

b +f intersects S, (3.15)

L)
1}
04

{0 otherwise

where the sign ambiguity in the last term is due
to the uncertainty in the relative orientation of
d5 and 5. We will consider only such deformations
where C}, is obtained by continuously changing C,
along the surface of the cone defined by the tro-
jeclory holding the end points §’ and §” of the
trajectory fixed. Here we exclude the vertex
point from the definition of the cone's surface.

It is evident that these deformati_gns will satisfv
(3.15) since a surface element dS on the cone
has no component in the 7 direction. Thus

BW=¢ [ A-dq. (3.16)
/e,

Furthermore, let us restrict the deformed path
C) to an arc segment of a circle on the cone. The
polar angle ¢ of the arc segment goes from y to
—v. [Cf. (2.12¢). Note that g’ =-p’, §”=p".] Let
us choose v >0, that is, eg <0 for definiteness.
[Cf. (2.9) and (2.5).] Then, for y 2w, (3.16) will
contain closed-loop integrals, so we can write
for any vy,

B“”--ef Redq+i,®,, (3.17)
[

v

where %, 1s the winding number (=0,1,2, ...)
(which we define as the number of times the tra-
jectory C, crosses itself), £, runs from vy to

-y +2k,m, and

«p,:e}gz»da. (3.18)

Here the integral is from 7 to —7. From Gauss’s
law and (3.15),

b =

e g (tzeg if7 is inside the cone
v 477

v
}\0 if # is outside the cone,
{3.19)

where &, is the solid angle of the cone.
Now let us consider the interference from two
trajectories v and p. The trajectories will trace

FIG. 2. The contours &, and £, on the vth and pth
cones which contribute to the same scattering angle
(see Sec. ITIC).

out two different cones which have common vertex
points and asvmptotic directions p’ and p”. We
wish to examine the difference B”’ =B®’, From
(3.17)

B _ B =p [

e

Adi-e [ R-di+i,®, -b,2,.
£p

v

(3.20)

where ¢, and ¢, are arcs of circles from §’ to §”
on the vth and pth cone respectively as illustrated
in Fig. 2. Since ¢, -, is a closed contour, we can
replace the first two terms in (3.20) by a flux in-
tergral ¢,,,. Using Gauss’s law,

d,=c [ a5 FxE), (3.21)
SUD
where S,,p is the surface enclosed by ¢, and Cpe
Once again applying (2.15),

s x3eg if n intersects S,,

=8 y

®up = 4y Pue +) 0 if # does not (3.22)
intersect S,,

where ,, is the solid angle subtended by Syp at
the vertex. Thus

% (B™ — B(P)= % (@,o+ky®, —k,®,).  (3.23)
Let us consider what happens to (3.23) if we rotate
n. Obviously the &’s will not change if we restrict
n from passing through either one of the cone sur-
faces, so neither will (1/%)(B®) — B(")), If on the
other hand we allow 7 to pass through a surface,
the right-hand side of (3.23) picks up an additional
multiple of +eg/27%, which from the Dirac quantiza-
tion condition equals 27z (2=0, +1, £2,...).° But
this added term does not contribute in the inter-
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ference term (2.23). Thus, the semiclassical dif-

ferential cross section is unaffected by the position

of n.
IV. COMPUTATION OF B(*)

If n is not a tangent to the cone, Eq. (3.16) gives
B® with C) restricted to an arc segment of a
circle on the cone from y to —y. Here # is yet to
be specified. We have found it convenient to
choose'®

A "§l X‘Isn 4 1
n = T (4.1)
To evaluate B®’ with this choice of 7, we proceed
as follows. Let R, be the rotation which brings »
to the cone axis, which we can choose to be the

third axis:
Rgn=1,=(0,0,1) . (4.2)
Then (3.16) and (3.1) show that

-y -~ -
B(v)._..ef dquinwAw(no,Q)
4

- e[ A(R,, 7,0"") = ARy, 7, -P")] ,  (4.3)

where A is the component of Z in the direction
¢ =(-sing, cosg,0). In deriving (4.3), we have
used the fact that g(t)~—p’as t=—, and =p"’
as f—~+w. The first term in (4.3) js trivial to in-
tegrate using the explicit form of A [ Eq. (2.2)].
One finds

Y . a - eg
ej; do gsinp A (n,,q) = - o Y cosy (4.4)

It remains to compute A’s. According to Zwan-
ziger,'” for an arbitrary rotation R,

AR, 7, m) = £ w(R, 7, 7) , (4.5)
where
~ ~ (Raxm) (nXm)
cosw(R,n, m) = Bl TEXA] (4.6a)
and
sinw(R, 2,m) = BAXM). [mx@xm)] -y g

|R7 X | |7 X 7]
(Zwanziger’s calculations are in four dimensions.
However, they are readily adapted to three di-
mensions.)

Using (4.2) and the expressions for p’ and p”
given by (2.12¢), one finds'®

w(R());l)I;” =— w(Ro,ﬁ,_iS’) (4'7)

and

—
-1

I

T cosy siny

A s 4.8a
cosw(Ry,n,-p’) |sinfle ¥ ’ ( )
' N sinzy Z _ _ﬂ_ 2]1/2
sinw(Ry,n,—p ) Isind| y [1 <27> .
(4.8b)

The explicit form of R, is not necessary for the
calculations. Finally,

BW =_ ;—é; [y cost— w(Ry,1,-p")] - (4.9)

We have verified this answer using geometrical
considerations based on the fact that A is pro-
portional to a certain solid angle (as mentioned
earlier) (cf. Ref. 12). We will not reproduce
these calculations here.

To complete the evaluation of the scattering

amplitude
<y g MO alo (i
A67,5)=3- < o)) em(: B%)
v
(2.19)

it remains to specify the phase factor €,. Letvy,,
Y2 - - - Yy ) d€nOte the y’s with increasing
modulus which contribute to the sum, with as-
sociated phase factors €,,€,,...,€y,,. We show
in Appendix B that

s
€,=exp (—12—1/) . (4.10)
The semiclassical cross section found here is
identical to that found by Schwinger et al.? [their

Eqgs. (3.60) and (3.61)!°], which was derived using
the rhethods of Ford and Wheeler.

V. CONCLUDING REMARKS

From the expressions for the differential cross-
section [ cf. equations (2.10), (2.11), (2.23), (4.9),
and (4.10)], one sees that G, =(1%v/2a)%0,, is in-
dependent of v for a fixed value of y (i.e., cosb)
for both A=C and A=Q. G, has been plotted in
Figs. 3(a)-3(d) for n=1,3,20,50. G, is plotted in
Fig. 3(e). For the same n, we have plotted the
ratio of the interference terms to the classical
cross section R=(G,- G.)/G, in Figs. 4(a)-4(d).
(The differential cross sections are invariant
under n - -n so that negative » need not be con-
sidered. Also in the figures we emphasize the
region where multiple trajectories contribute.
The classical and quantum cross sections are of
course equal in the region of one contributing tra-
jectory.) From the figures we see that even for
n as large as 50, the corrections to the classical
cross section can be appreciable at some angles.
However, the interference terms oscillate more
rapidly with increasing n. Thus, when averaged
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FIG. 3. (a)—(e) The normalized classical and semiclassical differential cross sections G, and G g(n) versus the cosine
of the scattering angle 6. The normalization is given by GA=(1r2u/2¢)z)2 04 for both A =@ and C. Gg(n) is plotted for
n =1, 3, 20, 50.

over small angular intervals, the interference We point out once again that our approximation
terms will tend to zero as n -, and the classical breaks down near the rainbow angles and near
answer will be recovered. But it is noteworthy 0=m. For a discussion of these regions see Ford
that the classical limit is approached quite slowly and Wheeler.®* Even upon excluding these regions
away from the backward direction. Figure 3(d) our answer for f exhibits a very nonanalytic

shows that even for » =50, the period of oscilla- nature. The analytic continuation of f from an

tion in the region of three contributing trajec- interval where N trajectories contribute to one
tories (-0.7671 > cosf> — 0.9187) is about 7°. where N’ trajectories contribute (N+ N') does

The oscillations are quite rapid in the region with not coincide with the actual value of f in the second
nine or more contributing trajectories (cosf region. Thus, the semiclassical scattering ampli-
<-0.9752) for any n#0. We have not plotted this tude is only piecewise analytic. It is interesting to

region in Figs. 3 and 4. investigate whether any such nonanalytic feature
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persists in the exact amplitude. We have investi-
gated this question in the following paper’ and find
the answer to be negative. Even so, however, we
have found some curious analytic structure of the
exact amplitude. By finding an integral repre-
sentation for the formally divergent exact partial-
wave expansion of f, we find that a branch-
point singularity exists at cosf =1 on the physical
sheet. The analytic continuation of f to unphysical
sheets exhibits additional logarithmic singulari-
ties at cosf =—-1. By contrast, when a well-known
over-all phase is removed, the Coulomb scattering
amplitude has only a simple pole in the forward
direction.
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APPENDIX A

Here we indicate the derivation of (2.19). Sub-
stituting (2.17) in (2.15), and making a stationary-
phase approximation on the integral, we find

N(&) (v) 1/2 .
= = : ” ISgn | ! pon
f®”,p')= Z €,\limg ls!vi 72 €xp| EB s
v q'q’

(A1)

where lim indicates the usual limits on ¢”, ts, and
t;, and q’ is given by (2.21). Using well-known re-
sults of classical mechanics,? one can shown that

SELIT | 03 @ - t) |

q -

IS¢y 17 3y

(A2)

The notation q”(q’, p’, t) indicates the position along
a classical trajectory at time ¢ which at time zéro
had position q’ and momentum p’. The right-hand
side is to be evaluated along the vth classical tra-
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jectory. Finally, Pechukas shows that'
3, >, >
9 ”( ’ ’ t —t) -1/
3 i S\ S5 R i S Sd T =
limg” 94d ’a%, 4 = |lo,(,)]*/?| (A3)

from which (2.19) follows.
APPENDIX B

Here we discuss how the JWKB phases ¢, were
determined to be exp(—i7v/2) in (4.10). According
to a well-known result,' the integer v is the num-
ber of zeros of the determinant

r -
Aly, t) = det <—————q'(q' P )> (B1)
Bq’

when v =7, and the time / varies from —= to +=.
Here 3”(q’, ', t) is the position on the trajectory
at time ¢, which at time —« had position q’ and
momentum p’. Also a zero of order 7 is to be
counted as »n zeros. Since in our problem P’ =mV’,
we can replace the initial momentum by the initial
velocity in (B1).

As a preliminary to the analysis, we prove the
following two identities:

9q;
vf = aq; 7 (B2)
GII X -‘;I) - Bq’i’ (al X ;I) (B3)
i aq; i

Here V" is the velocity at time ¢#. The proof of
(B2) follows from time-translation invariance.
Let £ be the value of a variable on a trajectory
at time ¢ and £7 its value at time #+ 7. Then one
has the obvious identity q”7(@’,¥,#)=4"@ %, v'7,
t). At large negative times the particle is free
sothat @'T=q' +¥'T,¥T=v’. Using this fact and
comparing linear terms in 7, one gets (B2).

Equation (B3) is a consequence of rotational in-
variance of the equation of motion. If R is an ar-
bitrary rotation, Rq”(q’, V', t)=q" (RY’, RV, ¢).
Choosing R to be an infinitesimal rotation around
v/, that is, R;;=&;,+ 6€;,,v;, one finds (B3).

Let us now rewrite A in a convenient form. If
m® and #* (@ =1, 2, 3) are two orthonormal right-
handed coordinate systems, then A =detN, where

Nog=nf aq‘ m‘s

If we now make the choice

a/x;l
M=, pit= L XY psomixmt,  (B4)
g’ x v’
- - >
V”X ”xvl
W=D, R=RXAY, A= @ )

7 x @ xv)1
(B5)

and use (B2) and (B3), we find
o ﬁz(a” y ;’) .g .[;n X (a" X "71)]

' |a; x| 7 x (an X V:)|

n

A= (B6)

Here s is the impact parameter #°+q’ and the dif-
ferentiation with respect to s is carried out hold-
ing m%+q’ (a=1,2), ¥, and ¢ fixed. (We sometimes
do not use the identity »” =2’ in order to facilitate
our later discussion of central potentials.) If we
substitute

1

ﬁz.(énxg,)=v' -—”X(anx;l)l, (B7)
A simplifies to
A
A AN (B8)
where
8g” - -
:_a%_ -[v"X(a"XV')]. (B9)

We exclude from our considerations zero-energy
and/or zero-impact-parameter trajectories. So
for us it suffices to consider the zeros of A.

Let us first observe some elementary properties
of . (1) From the expressions (2.7) for the tra-
jectories, one sees that A is a differentiable func-
tion of s and ¢ for 0<s <o and —w <t <+ow. (2)

The following asymptotic properties of A can be
derived from its definition:

A= |q' XV |0 ast= -w, (B10)

A= ' as t—+ow, (B11)

s
0,(¥)
where 0,(y) =s9s/8 cosf. The proof of (B10) fol-
lows by noticing that q”, ¥” -q’, ¥/, and 8q//3s
= (8q’;/aqj)m3!——m? as - —o. To show (Bl11), we
use

Q' ~V"t=0v'9"t as t—+o. (B12)

(Here, because of energy conservation, the equali-
ty v” =0’ as t—+% is also valid for central poten-
tials.) Thus

aan af)”

~ gyt
3s vtas,

(B13)
6” X ('&n X V t[V" S o V ) ;2]

Noticing also that since 7” is a unit vector, we
have v” «89”/8s =0, (B9) simplifies to

14[2 3(1}” * )
9s

A~ (B14)

which is the same as (B11).
We can divide the zeros of X into three classes
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for charge-monopole scattering:
(A) a/r :p";I ,

(B) a"X;’:KG”, quo’
05" e ey e
(C) —a—s—=av”+bq”><v’ and V" X (@” Xv’')#0.

The configurations (A) and (B) have a simple phy -
sical interpretation. For convenience let us in-
troduce the angle x = ¢ —7y. It has the significance
of the change in ¢ as time increases from -« to
t. Along the trajectory, |x[ increases monoton-
ically from 0 to 2'7].21 Now case (A) occurs once
for each complete revolution of the trajectory about
the cone axis, that is whenever |x|=2n7 (=1,
2,...). Case (B) occurs only on certain backward
scattering trajectories (cosf= -1). On such tra-
jectories, it occurs at the point of closest ap-
proach to the monopole (the origin). More pre-
cisely, it occurs for |v|=(2n -1)7 (n=1,2,...)
and /=0 or equivalently [X! = [y! [cf. (2.7d) and
(2.9)]. To show this, note from (B) that q” +v” =0
which means £=0. An explicit calculation of (B)
at £=0 shows |7| =(2n = 1)m.

On the other hand, the location of case (C)
zeros seems to have no obvious interpretation.

In the following, we will show that the zeros of
A are simple in all three cases. In addition, we
will extract useful information on the nature of
these zeros, in particular, on the sign of X at
these zeros. The latter will be especially im-
portant for the analysis of case (C).

Case (A)

1t is convenient to rewrite X in terms of (8q""/
ds), rather than (8q"’/3s),=2q'"/3s. For this note
that

3'&11) _<aan> <aan> a—x>

<8s ; \as x+ ax /g \8s /, ’ (B15)
a'&u) B a&/l) ?_X_\)
(at s \ax /s \at/ -

Since (8 /d¢), is never zero, (aa"/ax ), is parallel

or antiparallel to the velocity v/’. Hence, (B9)
gives

(B16)

)\=< q ) -[v”x(q”Xv’)] . (B17)
as X
Also, q'’=pv’ at |x| =2nw gives

35" _(@) g -

< o5 )x =35 Xv at |x|=2nm . (B18)

To examine if the case (A) zero is simple, let us
compute X. Using (B17) and (B18), we find

i=—(ﬂ’> |V x¥|2 at|x|=2n7 .
as I x1=2n7 (BIQ)

Here if |V’xV’| is zero, then V'’ is proportional
to v/=(1/p)q’’. Thus, the orbital angular mo-
mentum and hence s vanishes. Since we exclude
this case, A =0 implies

3p -
<.3_S> 2ny =0

39 z_l(aqr12> ~ .
p(as>xn =3 3¢ X—O at |x|=2nm. (B21)

The form of ¢’’2 in terms of |x| is, from (2.7),

(B20)

or

q'"%=s? cscz<ml— (B22)

20y
Thus,

1 (aql'2> —qnz 1 |:1 2] Tr')(l
2\ 8s /1y s (27/) 2yl

3

b (B23)

where we have used (2.9). The expression T at
|x|=2n7 can be written in two different ways in
terms of the angle y =w2n/ |y|:

v 2
Z=(1-ycoty)+ (-27n> y coty (B24)

y 2
—1—y[1—<m> ]coty .

We want to show that ~ cannot vanish for the al-
lowed range of y. Since |x| is equal to 2n7 and it
is bounded by 2|y|, we have |y|=nn. Thus, the
range of y is 0<y<7n. For O0<ys<n/2, the second
term in (B24) is positive, while the first term is
also positive due to the well-known inequality
ycoty<1for 0<y<n/2. Thus, £ >0 for this range.
On the other hand, for 7/2<y<m, coty<0 and so
(B25) shows that £ >0. This completes the proof
that x has only simple zeros in case (A).

Useful information on the sign of A at case (A)
zeros can be inferred from the preceding analysis.
By (B19), (B21), and (B23) we have

- ) q/IZ "\’I"X‘\’l/lz _
A= [—p] S W at |X|=2nr.

It has been show that £ >0. Also p<0 since the
incoming velocity V’_is directed towards the origin
and §” =pV’. Thus, A>0 at case A zeros.

(B25)

(B26)

Case (B)

Let us compute A at ¢=0 and |y| = (2n - 1)7.
From (B9) and §” XV’ =xVv” (k#0),
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oc(y)] as t—+w [so long as we are away from the
infinities of o, (y)]. Note that by (2.11), sgn[1/
¢ (v)] =sgn [sin2y X (tany = ¥)].

We will successively discuss the following re-
gions of y: (a) n/2<|y| <7, (b) |¥|=7, (c) <yl
<7l @ Ivl=17.ls (e) Iy <lvl<2m,. The 7,’s
are the roots of tany=v arranged in order of in-
creasing modulus.

(a) In Fig. 5(a), we plot A/¢”? versus |x|. The
crosses indicate the points where A cannot vanish,
while the first plus, for example, signifies the
fact that if A has a [case (C)] zero for 0<|x|<|y|,
then A >0 at that zero. [Cf. case (C) in table.]
Similarly, the minus indicates that if A has a zero
for |y| <|x|<w, then A <0 at that zero.

The function A/g”? starts out with a positive slope
in |x|, and here approaches a negative limit as
| x|=2|y| since o-(y)>0 by (2.11). Thus A/q"* has
an odd number of zeros in the intermediate region.
From the constraints indicated on the graph, we
then see that there can only be one zero, and it
has to be located in the interval |y| <|x|<#. This
conclusion is indicated by the dashed line.

(b) A similar plot is made in 5(b). The dots indi-
cate points where A/¢”? must vanish. The zero at
[x|=|y|=7 is a case (B) zero while the zero at | x|
=27 follows from o (n)=«. The dashed curve can
be inferred from Fig. 5(a) using continuity in |y|.

(c) In this region, o,(y)<0 so that A now has an
even number of zeros. The dashed curve in Fig.
5(c) follows either from the constraints on the
zeros (including A >0 at | x| =27 from the table) or
from continuity in y applied to Fig. 5(b). Thus,
there are two zeros in this region.

(@), (e) The dashed curves of Figs. 5(d) and 5(e)
are inferred from similar considerations. Here
we find two zeros for (d) and three for (e) in the
interval 0<|x|<2]|y|.

(f), (g),... Continuing the arguments in this
fashion, we find that the vth branch y, in y which
contributes to a given cosf (cf. Fig. 1) is as-
sociated with precisely v zeros. Thus Eq. (4.10)
follows.

We may remark that the signs of X at the case (A)
and (B) zeros inferred from the dashed curves are
in agreement with the table. This provides a
check on our arguments.

We finally indicate how the number of zeros of
A =det(d¢}’/3q;) can be found for central poten-
tials using the preceding techniques. The rea-
soning is essentially that of Pechukas.! Equa-
tions (B2) and (B3) are still valid so that (B8) and
(B9) are unchanged. Equations (B10) and (B11)
are also true with y replaced by s. It follows
that there are zeros at (A) v’’=0, that is at
turning points of zero impact parameter tra-
jectories, (B) q’’XV’=0, that is, at every half

(a) J}dyl <T

— X
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FIG. 5. (a)—(e) A schematic plot of A/g”2 versus ||
for various values of |y|. The figures are used to infer
the number of zeros of A =det(8q’,-'/8q; ). The dots indi-
cate the points where A/q”? must have a zero. The
crosses indicate the points where A/g”?2 cannot have
a zero. The pluses or minuses indicate the sign of
A ata zero of A/g”? in the corresponding (open) interval
of |'x], provided A/g”2 has a zero in that interval (see
Appendix B).

circuit of the particle around the potential, (C)
9q'!/as=av'’ + G X V' with ¥/ x (§"/ x¥) #0. (The
configuration q "xyr= K;", k #+0 is impossible
since the trajectory is confined to a plane.) Case
(C) can be analyzed by computing X. Then at a
zero, (B44) holds where C=q'XVv’'=3’"" XV’ and £
is the sign of € »(q’’XV’). Thus, ¢ is positive
for t— - and flips sign after every half circuit
Further, q’’-v’/< 0 before the closest distance of
approach of the particle to the potential center
and >0 afterwards. Thus, as in the charge-
monopole case, (B44) flxes the sign of Y at a
zero depending on where the zero is located. On
repeating the arguments which follow (B47), it is
then found that there is no case (C) zero at all if
(=1)% (s) <0 (where N is the number of half cir-
cuits), while there is precisely one case (C) zero
if (-1)% (s) >0. Further, this zero is located in

the region q’/*¥'/ > 0.



1118 A. P. BALACHANDRAN et al.

. ’ . -
A= 27 [Frx @ xT) + 97X (@7 xT)] at 1=0.
s (B27)
Using q” ¥” =0 (which follows from the equation of
motion), ¥ +¥' =0 (which follows from Q" XV =kV")
and (2.7b), A simplifies to

e

. = a"n
A=V =03 . aqs at t=0.

(B28)

The first term can be evaluated from the equation
of motion, the following expressions for §” and V"
at t=0:

q” =s(siny, 0, cosy) , (B29)
" = -e(a) (0,v',0), (B30)
and the form of ¥/ given by (2.12¢). We find
SU T = —20" cos®y at t=0, (B31)
where we have substituted |y|=(2n - 1)7. Similar-
ly, from (B29) and (2.12c),
123 8?1” — 13 1 2 -
=0 = (cos2y —3 sin®2y) at £=0.
(B32)
Therefore, at t=0,
A= —0'3(1+% sin®2y), (B33)
A<0 for s#0. (B34)

Thus, the case (B) zeros are also simple.

Case (C)

Let us assume that a case (C) zero occurs at
time ¢, Then (aﬁ"/as),o=afr" +b(q” X¥'). Next de-
fine a differential operator D,

D=gs - lavj +b@ V)] 5o

as aq, (B35)

The coefficients of D are independent of the vari-
able time on the trajectory since a and b are eval-

uated at f,. The advantage of D is that by (B2) and
(B3),
DQ"=0 at t,. (B36)

Further, because of the same equations, A can be
written for any time as

A=Dq{ - [V"X@"*x¥)]; . (B37)
Thus,
X=Dv! - [¥"X(@"XV)); at t,. (B38)

We want to rewrite A in a form that exhibits its
positivity properties. To facilitate this, we derive
some identities from energy and angular momen-
tum conservation. The former gives

¥"-DV"=0. (B39)

ot
-1

The latter can be written in the form
C=§"xT" —aq" =q' XV + av’, (B40)

where we have used ¢’=-v’. Thus, at to,

D—é=a" XDV” —.Dqlxv (541)

We now solve (B41) for DV for the purpose of
substitution in (B38). Using (B39),

" xDC= -DV"(@G" + V") at (. (B42)

Further, (B41) shows that DC is orthogonal to §”

and ¥/ and, hence, can be written in the form
- - q'X¥V

DC=¢|DC) W at t,, (B43)

where £=+1 or —1. Substituting (B42) and (B43)

into (B38), we find

3 IDC|

& [¥7 < @ X¥')|? at t,.

A== all 7 |a" X%

(B44)

From the definition of a case (C) zero, the last
factor is nonzero. Thus, A can vanish only if DC
=0. Since by (B40), (B41), and the definition of D,

C-DC=@G' x¥)-

=p'[q'x¥’|>0 for s#0,

(DG’ x¥')
(B45)

we conclude that the case (C) zeros are also simple.
Let us now investigate the sign of X at to- For

this note that & =sgn[C+ (" *x¥')] by (B43) and

(B45). A simple calculation using (2.7) and (2.12c)

gives

C- (@ x¥')=Cq"v’ sin’ sin|x| . (B46)

Since q” - V" <0 for ¢<0 (|x|<|y|) and q” - ¥" >0 for
t>0 (|x|>|vl), it follows that

sgni=sgnle(ly| = |x|) sin|x|] at ,. (B4T)

Note that a case (C) zero cannot occur at the fol-
lowing locations: (1) §”-¥”=0 (|x|=]|y|). Other-
wise (B42) and (B43) will give ¥/ X (§” X¥/)=0
which is forbidden in case (C). (2) smlxﬁ-
Otherwise from (B46) and (B43), C - DC=0 which
contradicts (B45).

We are ready to determine the number of zeros
of A on a trajectory with a given y. The following
table summarizes the results we have already ob-
tained:

Case A(x)=0 sgn(A) at A=0

(A) | x| =2nm +

(B) IxI=lyl=(@n-1)n -

(€) Ixl#Ivl, Ixl#nm  segnle(ly] =1x|) sin| x|]

Here n=1,2,. Further (B10) and (B11) show
that sgna)=+1 for {- —= and sgn(:) = sgn[1/
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